The University of Texas at Austin Department of Mathematics

The Preliminary Examination in Probability Part I

Thu, Jan 9, 2025

Problem 1 (30 pts). Suppose that $n \ge 2$ points are chosen inside the unit interval [0, 1], independently and with respect to the uniform distribution. Compute the moments $\mathbb{E}[L^k]$, $k \in \mathbb{N}$, of the length L of the smallest closed interval which contains all the points.

Problem 2 (40 pts). Let (S, \mathcal{S}) be a measurable space, and let $\mathcal{P} = \mathcal{P}(S, \mathcal{S})$ denote the set of all probability measures on (S, \mathcal{S}) . The **Hellinger distance** $H(\mu, \nu)$ between $\mu, \nu \in \mathcal{P}$ is defined by

$$H(\mu,\nu) = \left(\int \left(\sqrt{m} - \sqrt{n}\right)^2 d\rho\right)^{1/2} \text{ where } m = \frac{d\mu}{d\rho} \text{ and } n = \frac{d\nu}{d\rho}$$

and $\rho \in \mathcal{D}(\{\mu,\nu\})$, and where, for $\mathcal{R} \subseteq \mathcal{P}$, $\mathcal{D}(\mathcal{R})$ denotes the set of all $\rho \in \mathcal{P}$ such that $\nu \ll \rho$ for each $\nu \in \mathcal{R}$ (such measures are called **dominating measures** for \mathcal{R}).

- (1) Prove that $\mathcal{D}(\mathcal{R}) \neq \emptyset$ if \mathcal{R} is at most countable.
- (2) Find an example of a measurable space (S, \mathcal{S}) and a subset \mathcal{R} of $\mathcal{P}(S, \mathcal{S})$ such that $\mathcal{D}(\mathcal{R}) = \emptyset$.
- (3) Show that and the value of $H(\nu, \mu)$ does not depend on the choice of $\rho \in \mathcal{D}(\{\mu, \nu\})$,
- (4) Find the diameter $d = \sup\{H(\mu, \nu) : \mu, \nu \in \mathcal{P}\}$ of \mathcal{P} and show that $H(\mu, \nu) = d$ if and only if μ and ν are mutually singular.

Problem 3 (30 pts). Let X be a random variable with pdf $f_X(x) = e^{-x} \mathbb{1}_{\{x \ge 0\}}$, and let $X_1 = \min(X, 1)$. For $x \ge 0$, find the conditional distribution of X, given $X_1 = x$, and compute $\mathbb{E}[X \mid \sigma(X_1)]$.