The University of Texas at Austin Department of Mathematics

Preliminary Examination in Probability Part II August, 2024

Problem 2.1. Let *B* a standard, one-dimensional Brownian motion. Denote by

$$Z_t := e^{B_t - \frac{1}{2}t}, \ T_b := \inf\{t > 0 | \ Z_t = b\} \text{ and } Z^* := \sup_{t \ge 0} Z_t.$$

Compute

- (1) $\mathbb{P}[T_b < \infty]$ for b > 1,
- (2) the law of Z^* and the law of $1/Z^*$. (Hint: compute the probability $\mathbb{P}[Z^* > b]$ for b > 1).

Problem 2.2. Let X be a continuous semi-martingale, and X^n a sequence of continuous processes of bounded variation such that, for each $t \ge 0$, we have

$$\mathbb{P}[\lim_{n \to \infty} X_t^n = X_t] = 1$$

If $f : \mathbb{R} \to \mathbb{R}$ is a function of class C^1 , show that

$$\lim_{n \to \infty} \int_0^t f(X_s^n) dX_s^n = \int_0^t f(X_s) dX_s + \frac{1}{2} \int_0^t f'(X_s) d\langle X \rangle_s,$$

holds \mathbb{P} -a.s. for every $t \geq 0$.

Problem 2.3. (Brownian bridge) Let $(B_t)_{0 \le t \le 1}$ a standard one-dimensional Brownian motion (with time horizon T = 1) and denote by $(\mathcal{F}_t)_{0 \le t \le T}$ the (augmented) filtration generated by B. Denote by

$$\mathcal{G}_t := \mathcal{F}_t \lor \sigma(B_1), \quad 0 \le t \le 1,$$

a new filtration (where the value of the BM at terminal time T = 1 is known at time t). Show that (1)

$$\mathbb{E}[B_t - B_s | \mathcal{G}_s] = \frac{t - s}{1 - s} (B_1 - B_s), \ 0 \le s \le t \le 1.$$

(2) the process $(\beta_t)_{0 \le t \le 1}$, defined by

$$\beta_t := B_t - \int_0^t \frac{B_1 - B_s}{1 - s} ds, \ 0 \le t \le 1$$

is a \mathcal{G}_t -Brownian motion, independent of B_1 .

(3) Denote by

 $X_t^x := xt + B_t - tB_1, \ 0 \le t \le 1,$

(the Brownian bridge ending at x at time T = 1). Show that

$$X_t^x = \int_0^t \frac{x - X_s^x}{1 - s} ds + \beta_t, \quad 0 \le t \le 1.$$

Note: one can obtain the representation of the Brownian bridge in (3) from (2) by conditioning the BM on its terminal value.