Work 4 of the following 5 problems.

1. Consider $U \subset \mathbb{R}^m$ and $V \subset \mathbb{R}^n$ measurable. Let $p, q \in (1, \infty)$ with $p^{-1} + q^{-1} = 1$. Given $K \in L^q(U \times V)$, define

$$(Af)(u) = \int_{V} K(u, v) f(v) \, dv \,, \qquad f \in \mathcal{L}^{p}(V) \,, \quad u \in U \,.$$

Show that this defines a continuous linear operator $A : L^p(V) \to L^q(U)$, that the operator norm of A satisfies $||A|| \leq ||K||_{L^q}$, and that A is in fact compact.

- 2. Prove that a closed linear subspace of a reflexive Banach space is reflexive as well.
- **3.** Let X be a Banach space. Let $A : X \to X$ and $B : X' \to X'$ be linear. Assume that $(B\varphi)(x) = \varphi(Ax)$, for all $x \in X$ and all $\varphi \in X'$. Show that A and B are continuous.
- **4.** Let A be a continuous linear operator from a Banach space X to a normed vector space Y. Prove that A is invertible if and only if both A and $A' : Y' \to X'$ are bounded below.
- **5.** Let T be a distribution in $\mathcal{D}'(\mathbb{R})$ whose support is $\{0\}$, meaning that Tf = 0 for every function $f \in \mathcal{D}(\mathbb{R})$ whose support does not contain 0. Show that there exists $n \ge 0$, such that Tg = 0 whenever $g \in \mathcal{D}(\mathbb{R})$ satisfies $g(0) = g'(0) = \ldots = g^{(n)}(0) = 0$. Hint. Consider gh_{ε} in place of g, where $h_{\varepsilon}(x) = h(x/\varepsilon)$ and $h \in \mathcal{D}(\mathbb{R})$ is identically 1 near the origin.