PRELIMINARY EXAMINATION IN ANALYSIS PART I JANUARY 2024

Please provide complete proofs for at least 3 of the following 4 problems.

- (1) Let (X, d) be a compact metric space and let μ be a Borel probability measure on X. Let $f : X \to \mathbb{R}$ be a Borel measurable function. Prove that for every $\epsilon > 0$ there exist a closed subset $Y \subset X$ such that $\mu(Y) > 1 - \delta$ and the restriction of f to Y is continuous. Do not use Lusin's Theorem. The point of this exercise is to prove this from ideas which one typically learns prior to Lusin's Theorem.
- (2) Suppose ν and μ are positive finite measures on (X, \mathcal{M}) (where \mathcal{M} is a sigmaalgebra on X) with ν absolutely continuous to μ (in the sense that for every $E \in \mathcal{M}$ with $\mu(E) = 0$, we have $\nu(E) = 0$). Prove that for every $\epsilon > 0$ there exists $\delta > 0$ such that if $E \in \mathcal{M}$ and $\mu(E) \leq \delta$ then $\nu(E) \leq \epsilon$.
- (3) Let H be a Hilbert space. Given a linear subspace S ⊂ H, we define S[⊥] = {x ∈ H : ⟨x, y⟩ = 0 ∀y ∈ S}. Let S^{⊥⊥} = (S[⊥])[⊥]. Prove S^{⊥⊥} is the closure of S in the norm topology.
- (4) Let (X, d) be a compact metric space. Let $\operatorname{Prob}(X)$ be the set of Borel probability measures on X, C(X) be the Banach space of continuous functions on X and $C(X)^*$ be its Banach dual. Given $\mu \in \operatorname{Prob}(X)$, let $\phi_{\mu} : C(X) \to \mathbb{R}$ be the functional $\phi_{\mu}(f) = \int f d\mu$. Prove that the set $K = \{\phi_{\mu} : \mu \in \operatorname{Prob}(X)\} \subset C(X)^*$ is compact in the weak^{*} topology.