The University of Texas at Austin Department of Mathematics

The Preliminary Examination in Probability Part I

Thu, Jan 14, 2021

Problem 1. Let μ be a probability measure on $\mathcal{B}([0,\infty))$ (the Borel subsets of $[0,\infty)$) with the following property:

$$\mu([a,b]) = e^{-a} - e^{-b}$$
, for all $0 \le a < b$.

Following the instructions below, show that μ is absolutely continuous with respect to the Lebesgue measure λ on $[0, \infty)$.

Instructions: Give a detailed proof, from first principles, with clear references to all theorems you are using. You are allowed to use the following without proof (but with a clear reference): basic facts and theorems from measure theory on general measurable spaces, as well as the fact that $\int \mathbf{1}_{[a,b]} e^{-x} \lambda(dx) = e^{-a} - e^{-b}$ for a < b in the Lebesgue sense. In particular, you cannot use the notion of a derivative at all!

Problem 2. Let Y be a standard normal random variable, and let X be a random variable such that both pairs (X, Y) and (X, X - Y) are independent. Show that X is constant with probability 1.

Problem 3. Let $\{X_n\}_{n \in \mathbb{N}_0}$ be a simple symmetric random walk¹ and let |X| = M + A be the Doob-Meyer decomposition of the submartingale |X|, with respect to filtration generated by X, into a martingale M with $M_0 = 0$ and a non-decreasing predictable process A. Show that M admits the representation²

$$M = H \cdot X,\tag{1}$$

for some predictable process H and find an explicit expression for H.

 $^{{}^{1}}X_{0} = 0, X_{n} = \sum_{k=1}^{n} \xi_{k}, \text{ for } n \in \mathbb{N}, \text{ where } \{\xi_{n}\}_{n \in \mathbb{N}} \text{ is an iid sequence with } \mathbb{P}[\xi_{1} = -1] = \mathbb{P}[\xi_{1} = 1] = \frac{1}{2}.$

 $^{^{2}}H \cdot X$ denotes the martingale transform: $(H \cdot X)_{0} = 0$ and $(H \cdot X)_{n} = \sum_{k=1}^{n} H_{k}(X_{k} - X_{k-1})$ for $n \ge 1$.