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Problem 1. Let (2, F,P) be a probability space, and let IL° be the collection of all P-a.s.-equivalence
classes of R-valued random variables. Show that there exists a metric d : L x LY — [0, c0) such that
(L%, d) is a complete metric space, and a sequence {X,, }nen in L° converges under d if and only if it

converges in probability.

Problem 2. Let {/,}.en be a sequence of probability measures on R such that j,, — p, for some
probability measure @ on R and

Sup |¢#n| € LI(A)7

neN

where X is the Lebesgue measure on R and ¢,,, is the characteristic function of p,. Show that pu << A

dun . d
and p, < A for each n € N, and 3+ — 2%, A-a.e.
Problem 3. Let &, &, .... be a sequence of independent random variables such that
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Show that there exist a random variable X, such that X, converges a.s. and in L? to X,. Compute

Denote by

the law of the random variable X . Is the convergence also an L*° convergence?




