PRELIMINARY EXAMINATION IN ANALYSIS PART I - REAL ANALYSIS JANUARY 11, 2016

Please try to solve 4 of the following 5 problems.

- (1) For any $r \geq 0$ and any $x \in \mathbb{R}^2$ define $B_r(x) = \{y \in \mathbb{R}^2 : |y x| \leq r\}$. Let 0 < c < 1. Let E be a measurable subset of the unit square $Q \subset \mathbb{R}^2$ with the property that for every $x \in Q$ and every r > 0 there exists $y \in B_r(x)$ such that $B_{c|x-y|}(y) \subset E$. Prove that $Q \setminus E$ has measure zero.
- (2) Show that if p > 1 and $f \in L^p([0,\infty), m)$ then the 'mean functional' of f,

$$F(y) := \frac{1}{y} \int_0^y f(t) \ dt = \int_0^1 f(xy) \ dx$$

is also in $L^p([0,\infty),m)$ and moreover

$$||F||_p \le \frac{p}{p-1} ||f||_p.$$

Hint: consider f(xy) as a function of two variables on $[0,1] \times [0,\infty)$ and use the generalized Minkowski inequality (which states that if $g: X \times Y \to \mathbb{R}$ is any measurable function on the direct product of two sigma-finite measure spaces $(X,\mu),(Y,\nu)$ then

$$|||g||_{L^1(X,\mu)}||_{L^p(Y,\nu)} \le ||||g||_{L^p(Y,\nu)}||_{L^1(X,\mu)}$$
.

(3) Let (X, d) be a compact metric space. Let $\{\mu_n\}$ be a sequence of positive Borel measures on X that converge in the weak* topology to a finite positive Borel measure μ . Show that for every compact $K \subset X$,

$$\mu(K) \ge \limsup_{n \to \infty} \mu_n(K).$$

(4) Let $1 . Assume <math>f \in L^p(\mathbb{R})$ satisfies

$$\sup_{0<|h|<1}\int \left|\frac{f(x+h)-f(x)}{h}\right|^p dx < \infty.$$

Show that f has a weak derivative $g \in L^p$, which by definition satisfies $\int \psi g = -\int \psi' f$ for every C^{∞} function ψ on \mathbb{R} with compact support.

(5) Assuming $f:[0,1]\to\mathbb{R}$ is absolutely continuous, prove that f is Lipschitz if and only if f' belongs to $L^{\infty}([0,1])$.