PRELIMINARY EXAMINATION: APPLIED MATHEMATICS—Part I

January 15, 2016, 1:00-2:30

Work all 3 of the following 3 problems.

- 1. Let $A \subset \mathbb{R}^m$ and $B \subset \mathbb{R}^n$ be closed and bounded (i.e., compact). Let $T: C(A) \to C(B)$ be a linear map taking continuous functions on A to continuous functions on B. Suppose that T is positive $(T \ge 0)$ in the sense that $Tf(y) \ge 0$ for all $y \in B$ whenever $f(x) \ge 0$ for all $x \in A$.
 - (a) Prove that the map T is continuous and that $||T|| = ||T(1)||_{L^{\infty}(B)}$.
 - (b) Let $T_n: C(A) \to C(B)$ be an increasing family of maps $(T_{n+1} T_n \ge 0 \text{ for all } n)$. Prove that T_n converges in the operator norm if and only if $T_n(1)$ converges in the norm of C(B).

2. Let X be an NLS.

- (a) State what it means for a sequence $\{x_n\}_{n=1}^{\infty}$ in X to converge weakly to x, and show that in this case, $||x_n||$ is uniformly bounded.
- (b) Define the weak topology on X and describe a base for the weak topology at 0.
- (c) Let H be a separable Hilbert space and $T: H \to H$ a bounded linear operator. Suppose that $f \in H$ and there is a sequence $f_n \in H$ such that $f_n \stackrel{w}{\rightharpoonup} f$ and there is a solution x_n so that $Tx_n = f_n$ for all n. Suppose that x_n is bounded, and prove that there is $x \in H$ such that Tx = f.

3. Let H be a Hilbert space.

- (a) If M is a nonempty subset of H, show that the span of M is dense in H if and only if $M^{\perp} = \{0\}$.
- (b) Let $T: H \to H$ be a bounded linear operator. Let N = N(T) be the null space of T and R(T) be the range or image of T. Let $P: H \to N$ be orthogonal projection onto N. Show that $S = T \circ P^{\perp}$ is a one-to-one mapping when restricted to N^{\perp} and that R(S) = R(T).