PRELIMINARY EXAMINATION IN ANALYSIS

Part I, Real Analysis

August 15, 2016

- **1.** Prove that, on a finite measure space, if $f_k \to f$ in measure and $g_k \to g$ in measure, then $f_k g_k \to f g$ in measure.
- **2.** Let f be a locally integrable function on \mathbb{R}^2 . Assume that, for any given real numbers a and b outside some set of measure zero, f(x,a) = f(x,b) for almost every $x \in \mathbb{R}$ and f(a,y) = f(b,y) for almost every $y \in \mathbb{R}$. Show that f is constant almost everywhere on \mathbb{R}^2 .
- **3.** Let $f, f_1, f_2, \ldots \in L^p$ with $1 \le p < \infty$. If $f_k \to f$ pointwise a.e. and $||f_k||_p \to ||f||_p$, show that $||f f_k||_p \to 0$.
- **4.** For a function $f \in L^1(\mathbb{R}^2)$ let $\widetilde{M}f$ be the unrestricted maximal function

$$\widetilde{M}f(x_0, y_0) = \sup_{Q} \int_{Q} |f(x, y)| dxdy,$$

where the supremum is over all $Q = [x_0 - k, x_0 + k] \times [y_0 - l, y_0 + l]$ with k, l > 0.

(a) Show that $\widetilde{M}f(x_0,y_0) \leq M_1M_2f(x_0,y_0)$, where

$$M_1 f(x_0, y) = \sup_{k>0} \frac{1}{2k} \int_{x_0-k}^{x_0+k} |f(x, y)| dx, \quad M_2 f(x, y_0) = \sup_{l>0} \frac{1}{2l} \int_{y_0-l}^{y_0+l} |f(x, y)| dy.$$

(b) Show that there exists C > 0 such that if $f \in L^2(\mathbb{R}^2)$ then

$$\|\widetilde{M}f\|_{\mathrm{L}^2(\mathbb{R}^2)} \le C\|f\|_{\mathrm{L}^2(\mathbb{R}^2)}.$$