PRELIMINARY EXAMINATION IN ANALYSIS

Part II, Complex Analysis

August 15, 2016

- 1. Let f be analytic in a connected open neighborhood of the closed unit disk $|z| \le 1$. Assume that |f(z)| = |z+1| on the unit circle |z| = 1, that f(1) = 2, and that f has simple zeros at $\pm i/2$ and no other zeros in the disk |z| < 1. Show that these properties determine f uniquely. Calculate f(0).
- 2. Evaluate the integrals

$$I = \int_C \sqrt{1 - z^2} \, dz, \qquad J = \int_0^\infty \frac{x \sin(\pi x)}{1 - x^2} \, dx,$$

for some branch of the square root function (indicate which), where C is the positively oriented circle |z|=2.

- **3.** Is there an entire function f that satisfies $|f(z)| \ge e^{c|z|}$ for some c > 0 and all sufficiently large |z|? Give an example of such a function or prove that none exists.
- **4.** Let \mathcal{F} be the set of all entire functions f with the following properties. The zeros a_1, a_2, \ldots of f satisfy $\sum_n |a_n|^{-1} \leq 1$. Furthermore, f(0) = 1, $|f'(0)| \leq 1$, and $e^{-|z|}|f(z)| \to 0$ as $|z| \to \infty$. Show that every sequence $n \mapsto f_n$ in \mathcal{F} has a subsequence that converges uniformly on compact subsets of \mathbb{C} .