Algebra Prelim part B January 7, 2014 2015 Aug

Directions: You have 90 minutes. Solve two of the three problems. Clearly mark which ones you want graded.

- **B1.** Let l and p be primes. Show that the number of irreducible monic polynomials over \mathbf{F}_p , of degree l, is equal to $(p^l p)/l$.
- **B2.** Suppose k is an algebraically closed field, V is a finite-dimensional vector space over k, and $M:V\to V$ is a linear transformation. Show that there exists a unique pair of linear transformations $D,N:V\to V$ with the following properties. (For existence you can use well-known results, but for uniqueness you should argue directly.)
 - (1) M = N + D.
 - (2) N is nilpotent, i.e. $N^s = 0$ for some integer s > 0.
 - (3) D is diagonalizable, i.e. V has a basis of D-eigenvectors.
 - (4) Every linear transformation G commuting with M also commutes with N and D.
- **B3.** Let E be the splitting field of $x^7 3$ over **Q**.
 - (a) Determine the Galois group $\operatorname{Gal}(E/\mathbf{Q})$ as a group of permutations of the roots of x^7-3 .
 - (b) Find a primitive generator of E/\mathbf{Q} .
 - (c) Prove that E is not a subfield of any cyclotomic extension of \mathbf{Q} .
 - (d) Describe all the subfields of E/\mathbf{Q} that are Galois over \mathbf{Q} .