1. Consider the following ODE initial value problem and the related class of numerical algorithms,

$$y'(t) = f(y(t)), \quad t > 0, y(0) = y_0,$$

$$y_{n+1} = y_n + h((1 - \alpha)f(y_n) + \alpha f(y_{n+1}))$$

$$0 \le \alpha \le 1, t_n = nh, n = 0, 1, ...$$

- (a) Determine the order of the local truncation error as a function of α and check if the Dahlquist stability condition is satisfied.
- (b) For which α -values is the algorithm A-stable.
- (c) Show that for $\alpha = \frac{1}{2}$ and $f = i\omega y$ with real ω , the algorithm is an exact approximation of an ODE with slightly different real ω .
- 2. Given the parabolic equation below,

$$\begin{aligned} u_t &= (a(x)u_x)_x - b(x)u, \quad 0 < x < 1, 0 < a \le a(x) \le A, 0 < b \le b(x) \le B \\ u(x,0) &= u_0(x), \ u(0,t) = 0, u_x(1,t) = 0. \end{aligned}$$

- (α) Develop the general form of a finite element approximation (FEM) and a discontinuous Galerkin approximation (DG) of this parabolic problem. Use trapezoidal rule (Crank-Nicolson) for time discretization.
- (b) Show that the bilinear form in the finite element approximation of the related stationary problem $-(a(x)u_x)_x + b(x)u = f(x)$, u(0) = 0, $u_x(1) = 0$ is coersive and continuous.
- (c) Show that if explicit time discretization is used then the overall DG scheme will be explicit but not the FEM approximation.
- 3. (a) Develop a Lax-Friedrichs and also an upwind finite difference approximation of the hyperbolic system below. (Simplifying the problem by replacing the matrix A by the scalar a > 0 will give partial credit.)

$$u_t = Au_x + f(x)$$
$$A = \begin{pmatrix} 1 & 2\\ 0 & -3 \end{pmatrix}$$

- (b) Determine the order of accuracy of the upwind approximation based on the local truncation error.
- (b) Use von Neumann analysis to show that with periodic boundary conditions the Lax-Friedrichs scheme is L^2 stable.