ALGEBRA PRELIMINARY EXAM: PART II

Each problem is worth 10 points and the passing score is 20 points.

Problem 1

Let $\alpha = 1 + \sqrt[3]{3} + \sqrt[3]{9}$

- a) Determine the degree of $\mathbb{Q}(\alpha)$ over \mathbb{Q} .
- b) Prove that $\sqrt{3} \notin \mathbb{Q}(\alpha)$.
- c) Determine the minimal polynomial of α over \mathbb{Q} .
- d) Determine a primitive generator of the Galois closure of $\mathbb{Q}(\alpha)$ over \mathbb{Q} .

Problem 2

Consider $f(x) = x^4 - 5x^2 + 7 \in \mathbb{Q}[x]$. Let E/\mathbb{Q} be the splitting field of f(x) and $\beta \in E$ be a root of f(x).

- a) Prove that f(x) is irreducible in $\mathbb{Q}(x)$.
- b) Prove that $Gal(E/\mathbb{Q})$ is isomorphic to the dihedral group of order 8.
- c) Prove that $\beta \notin \mathbb{Q}(\zeta_n)$ for any $n \in \mathbb{N}$. Here ζ_n denotes a primitive n-th root of unity.
- d) Determine the number of subfields of E which are Galois over \mathbb{Q} . (Justify your reasoning.)

Problem 3

Let p be a prime, \mathbb{F}_p be the field with p elements.

- a) Determine the number of irreducible polynomials of degree p in $\mathbb{F}_p[x]$. (Justify your reasoning.)
- b) Prove that $f_a = x^p x + a \in \mathbb{F}_p[x]$ is irreducible for every $a \in \mathbb{F}_p \setminus \{0\}$.

Date: August 20, 2025.