PROBABILITY THEORY I - PRELIM EXAM

Aug 19, 2025, 12:00pm - 2:00pm

Problem 1. Let X be a random variable and let $\{Y_n\}_{n\in\mathbb{N}}$ be sequence of normally distributed random variable with mean 0 and variance $\frac{1}{n}$, independent of X.

- 1. Prove that $X+Y_n$ is an absolutely continuous random variable for each $n\in\mathbb{N}.$
- 2. Prove that $X+Y_n\to X$ in distribution as $n\to\infty$.
- 3. Does the convergence above hold a.s.?

Problem 2. Let $\{X_n\}_{n\in\mathbb{N}}$ be an iid sequence of strictly positive random variables such that $X_1,X_1^{-1}\in\mathbb{L}^\infty$, and let $Y_n=\prod_{k=1}^n X_k$. Show that $\lim_n \frac{Y_n}{\mathbb{E}[Y_n]}=0$ a.s. if and only if X_1 is not constant a.s.

Problem 3. Let X, Y_1, Y_2 be three random variables defined on the same probability space. Show that (X, Y_1) and (X, Y_2) have the same distribution if and only Y_1 and Y_2 have the same conditional distribution given $\sigma(X)$.