

ALGEBRA PRELIMINARY EXAM: PART II

The passing score is 20 points.

PROBLEM 1 [8 POINTS]

Let K/F be a Galois extension and $g \in \text{Gal}(K/F)$. Compute the characteristic polynomial of g , where g is considered as an F -linear map from K to K .

(Hint: start by considering the case where $\text{Gal}(K/F)$ is cyclic.)

PROBLEM 2 [10 POINTS]

Let p be a prime and \mathbb{F}_p denote the field with p elements.

- Prove that $(x^2 - 2)(x^2 - 5)(x^2 - 10)$ has a root over \mathbb{F}_p for every prime p but it does not have a root over \mathbb{Z} .
- Prove that $x^4 - 10x^2 + 1$ is irreducible in $\mathbb{Z}[x]$ but not in $\mathbb{F}_p[x]$ for any prime p .
(Hint: think about the structure of finite field extensions.)

PROBLEM 3 [10 POINTS]

Let $n \in \mathbb{N}$ and F/\mathbb{Q} be the extension generated by the n -th roots of unity.

- Prove that the primitive n -th roots of unity form a basis of F as a vector space over \mathbb{Q} if and only if n is squarefree (i.e. not divisible by the square of any integer).
- Prove that $\mathbb{Q}(\sqrt[3]{2})$ is not a subfield of F .