

DIFFERENTIAL TOPOLOGY EXAM

JANUARY 15, 2026

You should attempt all three problems. The exam length is two hours. If a question is unclear, please ask. Although you should strive for neat and detailed solutions, we are mindful that the exam is timed.

Problem 1. Let $f: \mathbb{R}^3 \rightarrow \mathbb{R}^2$ and $g: \mathbb{R}^2 \rightarrow \mathbb{R}^3$ be defined by

$$f(x, y, z) = (x + y^2 - z^2, x - y^2 + z^2) \quad \text{and} \quad g(s, t) = (s^2, s + t, s - t).$$

- (a) Let $X = f^{-1}(5, -3)$. Prove that X is a submanifold of \mathbb{R}^3 .
- (b) Let $Y = \text{im } g$. Prove that g is an embedding and thus that Y is a submanifold of \mathbb{R}^3 . Explain why g is a proper map, and why this is relevant.
- (c) Show that X and Y intersect transversely at two points.

Problem 2. In this question, you should use the definition of the Lefschetz number as the sum of local Lefschetz numbers.

- (a) Let $\text{id}: \text{SO}(n) \rightarrow \text{SO}(n)$ be the identity map. Calculate the Lefschetz number of id . *Hint:* the fact that $\text{SO}(n)$ is a group may be helpful.
- (b) Let $\text{sq}: \text{SO}(n) \rightarrow \text{SO}(n)$ be the squaring map sending $A \mapsto A^2$. Calculate the Lefschetz number of sq .
- (c) Give an example of a manifold X , together with two Lefschetz maps f and g from X to itself, such that f and g are isotopic but f and g do *not* have the same Lefschetz number. *Hint:* under what conditions on X is the Lefschetz number an isotopy invariant?

Problem 3. Throughout this question, you should not use algebraic topology, nor should you use pre-existing computations of de Rham cohomology.

- (a) Using only the fundamental theorem of calculus and the definition of a closed form, prove that every closed 1-form on \mathbb{R}^2 is exact, as follows. Let α be a closed 1-form on \mathbb{R}^2 . Let $h(x, y)$ be the integral of α along the horizontal path from the origin to $(x, 0)$, plus the integral of α along the vertical path from $(x, 0)$ to (x, y) . Show $\alpha = dh$.

Now consider the torus $T^2 = S^1 \times S^1 = \mathbb{R}^2 / \mathbb{Z}^2$. Let γ_1 be any curve of the form $S^1 \times \{*\}$ and γ_2 be any curve of the form $\{*\} \times S^1$.

- (b) Let α be a closed 1-form on T^2 . Show that α is exact if and only if

$$\int_{\gamma_1} \alpha = \int_{\gamma_2} \alpha = 0.$$

Hint: one direction is easy. For the other direction, what happens when we try to replicate our argument from (a)?

- (c) The de Rham cohomology $H_{\text{dR}}^1(T^2)$ is defined to be the space of closed 1-forms on T^2 , modulo the subspace of exact 1-forms on T^2 . Verify that the map $H_{\text{dR}}^1(T^2) \rightarrow \mathbb{R}^2$ sending

$$[\alpha] \mapsto \left(\int_{\gamma_1} \alpha, \int_{\gamma_2} \alpha \right)$$

is a well-defined linear isomorphism.