

PRELIMINARY EXAMINATION: APPLIED MATHEMATICS — Part I

Wednesday, January 14, 2026, 6:30 pm-8:30 pm

Work all 3 of the following 3 problems.

1. Let X be a normed linear space and $Y \subset X$ a closed subspace such that $Y \neq X$. Let θ be given with $0 < \theta < 1$.

- (a) Prove that there is some $z \in X$ such that $\|z\| = 1$ and $\text{dist}(z, Y) \geq \theta$.
- (b) Prove that if the dimension of X is infinite and M is a closed bounded set with nonempty interior, then M is not compact.

2. Let the normed linear space X be *uniformly convex*. This means that for any ϵ , $0 < \epsilon \leq 2$, there exists $\delta > 0$ such that for all $x, y \in X$, $\|x\| = \|y\| = 1$, $\|x - y\| \geq \epsilon$, it holds that

$$\left\| \frac{x+y}{2} \right\| \leq 1 - \delta.$$

Suppose that $x_n \in X$ and $x_n \rightharpoonup x$ as $n \rightarrow \infty$.

- (a) If $\|x_n\| = \|x\| = 1$, show that $x_n \rightarrow x$. [Hint: First show that $\|x_n + x\| \rightarrow 2$.]
- (b) If $\|x_n\| > 0$, $\|x\| > 0$, and $\|x_n\| \rightarrow \|x\|$, show that $x_n \rightarrow x$.
- (c) If merely $\|x_n\| \rightarrow \|x\|$, show that $x_n \rightarrow x$.

3. Define the linear operator $T : L^2([0, 1]) \rightarrow L^2([0, 1])$ by

$$Tf(x) = \int_0^x \int_y^1 f(z) dz dy.$$

- (a) Show that T is self-adjoint.
- (b) Show that T is compact.
- (c) Find an orthogonal basis for $L^2([0, 1])$ based on the eigenvalues of this operator. [Hint: differentiate twice and consider carefully the boundary conditions that must be satisfied.]