ALGEBRA PRELIMINARY EXAM: PART I

The first three problems are worth 10 points, and the last one 5 points. The passing score is 23 points.

- (1) Prove or disprove: there is a simple group of order 2025.
- (2) Let k be a field and let $A = k[X, Y]/(X^2, XY, Y^2)$.
 - (a) Explicitly determine the invertible elements of A.
 - (b) Explicitly classify the principal¹ ideals of A.
- (3) (a) Find the invariant factors of the quotient group \mathbb{Z}^3/N , where N is the subgroup of \mathbb{Z}^3 generated by (-4, 4, 2), (16, -4, -8), and (8, 4, 2).
 - (b) Let \mathbb{F}_2 be the field of 2 elements and let $R = \mathbb{F}_2[X]$. List, up to isomorphism, all R-modules with exactly 16 elements.
- (4) Does there exist a 3×3 matrix A over \mathbb{Q} such that $A^8 = I$ but $A^4 \neq I$?

¹Just saying ideals of the form (a) for $a \in A$ is not enough: also determine when does (a) = (b) for $a, b \in A$.