Differential Topology Prelim Exam January 11, 2025

Instructions: There are three problems, each worth 10 points. Do all three. You have two hours.

Problem 1 Let M be a smooth m-dimensional manifold embedded in \mathbb{R}^n . Let p be a point in the complement of M. Prove that there exists a line L through p such that $L \pitchfork M$. (That is, the intersection of L and M is transverse.) The dimensions m and n are intended to be arbitrary, except that n > 0 and $m \le n$.

Problem 2 On \mathbb{R}^4 , consider the linear map $f_0 : \mathbb{R}^4 \to \mathbb{R}^4$ given by $f_0(w, x, y, z) = (-w, x, 2y, 3z)$. This induces a map $f : \mathbb{R}P^3 \to \mathbb{R}P^3$ by $f[w, x, y, z] = [f_0(w, x, y, z)]$, where [w, x, y, z] is the equivalence class of (w, x, y, z).

- a. Find all of the fixed points of f.
- b. For each fixed point, compute the local Lefschetz number.
- c. Either prove that f is homotopic to the identity map or prove that it isn't.

Problem 3 On $\mathbb{R}^2 - \{0\}$, consider the 1-form

$$\omega = \frac{x\,dy - y\,dx}{2\pi(x^2 + y^2)}.$$

- a. Show that ω is closed.
- b. Is ω exact? Either find a function $f : \mathbb{R}^2 \{0\} \to \mathbb{R}$ such that $\omega = df$ or prove that no such function exists.
- c. Let $S^1 = [0, 1]/\sim$, where the points 0 and 1 are identified, and let $\gamma : S^1 \to \mathbb{R}^2 \{0\}$ be a closed curve that is homotopic to the curve $\gamma_n(t) = (\cos(2\pi nt), \sin(2\pi nt))$ that wraps around the unit circle *n* times. Show that $\int_{S^1} \gamma^* \omega = n$