ALGEBRA PRELIMINARY EXAM: PART II

Each problem is worth 10 points and the passing score is 20 points.

Problem 1

Let p be a prime, \mathbb{F}_p be the field with p elements.

- a) Let $f(x) = x^p x + 1 \in \mathbb{F}_p(x)$ and α be a root of f(x). Prove that $\mathbb{F}_p(\alpha)/\mathbb{F}_p$ is Galois and determine the cardinality of $\mathbb{F}_p(\alpha)$.
- b) Prove that $\mathbb{F}_p(x,y)/\mathbb{F}_p(x^p,y^p)$ is not a simple extension.

Problem 2

Consider $f(x) = x^4 - 2x^2 - 2 \in \mathbb{Q}[x]$. Let $\pm \alpha, \pm \beta$ denote the roots of f(x).

- a) Determine the degree of the splitting field E of f(x) over \mathbb{Q} .
- b) Prove that $\operatorname{Gal}(E/\mathbb{Q})$ is isomorphic to the dihedral group of order 8.
- d) Determine a primitive generator of E/\mathbb{Q} .
- c) Determine all the subfields of E and identify the ones that are Galois over \mathbb{Q} .

Problem 3

Let K be a field and $f(x) \in K[x]$ be a separable irreducible polynomial of degree 5 with distinct roots α and β . Prove that if $K(\alpha) = K(\beta)$ then $K(\alpha)/K$ is Galois.

Date: January 10, 2025.