PRELIMINARY EXAMINATION: APPLIED MATHEMATICS — Part II

Wednesday, January 8, 2025, 11:30am-1:30pm

Work all 3 of the following 3 problems.

1. (20 pts) For $f \in S(\mathbb{R})$, define the Hilbert transform of f by $Hf = PV\left(\frac{1}{\pi x}\right) * f$, where the convolution uses ordinary Lebesgue measure.

- 1) Show that $PV\left(\frac{1}{x}\right) \in \mathcal{S}'$.
- 2) Using the fact the Fourier Transform $F\left(PV\left(\frac{1}{x}\right)\right) = -i\sqrt{\frac{\pi}{2}}\operatorname{sgn}(\xi)$, where $\operatorname{sgn}(\xi)$ is the sign of ξ , show that

$$||Hf||_{L^2} = ||f||_{L^2}$$
 and $HHf = -f$, for $f \in S(\mathbb{R})$.

- 3) Extend H to $L^2(\mathbb{R})$.
- **2.** (20 pts) Let $f \in L^2(\mathbb{R}^d)$ and consider the problem

$$-\Delta u + u = f$$
 in \mathbb{R}^d .

- i. Find the variational problem associated to the PDE.
- ii. Use the Lax Milgram Theorem to show the existence and uniqueness of a solution in $H^1(\mathbb{R}^d)$ to the variational problem.
- iii. Using the Fourier transform, show that the solution is actually in $H^2(\mathbb{R}^d)$.

3. (20 pts) For fixed T > 0, let $g : [0, T] \times \mathbb{R}^d \to \mathbb{R}^d$ be continuous and Lipschitz continuous in the second argument, i.e., there is some L > 0 such that

$$\|g(t,v) - g(t,w)\| \le L \|v - w\| \quad \forall v, w \in \mathbb{R}^d, t \in [0,T]$$

where $\|\cdot\|$ is the norm on \mathbb{R}^d . For any $u_0 \in \mathbb{R}^d$, consider the initial value problem (IVP) u'(t) = g(t, u(t)) and $u(0) = u_0$.

- a) Write this IVP as the fixed point of a functional $G: C^0([0,T]; \mathbb{R}^d) \to C^0([0,T]; \mathbb{R}^d)$.
- b) Normally, we use the $L^{\infty}([0,T])$ -norm for $C^0([0,T]; \mathbb{R}^d)$. Show that the function $\|\cdot\| : C^0([0,T]; \mathbb{R}^d) \to [0,\infty)$, defined by

$$|\!|\!| v |\!|\!| = \sup_{0 \le t \le T} \left(e^{-Lt} |\!| v(t) |\!| \right)$$

is a norm equivalent to the $L^{\infty}([0,T])$ -norm.

- c) In terms of this new norm, show that G is a contraction.
- d) Explain how we conclude that there is a unique solution $u \in C^1([0,\infty); \mathbb{R}^d)$ to the IVP for all time.