Thomas Chen
- Professor
- Mathematics

Contact Information
Biography
Thomas Chen is a professor in the Department of Mathematics at The University of Texas at Austin. He earned two Ph.D. degrees from ETH Zurich; one in mechanical engineering in 1999, and another in theoretical and mathematical physics in 2001.
Before joining UT Austin, Chen held positions at the Courant Institute of Mathematical Sciences at New York University, and at Princeton University as an assistant professor. He joined UT Austin in 2008. He served as chair of the Department of Mathematics from 2017 to 2024.
Research
Renormalization group methods, spectral and dynamical problems in QFT.
Mathematical foundations of deep learning, interpretability problem.
Scaling limits of quantum dynamics, nonlinear PDEs, Hamiltonian dynamics.
Research Areas
- Mathematics
Fields of Interest
- Analysis
- Mathematical Physics
- Statistical/Machine Learning
Education
- Ph.D. in Mathematical Physics, ETH Zurich, Switzerland (2001)
- Ph.D. in Mechanical Engineering, ETH Zurich, Switzerland (1999)
Publications
Selected publications:
- T. Chen, P. Munoz Ewald; Gradient flow in parameter space is equivalent to linear interpolation in output space, https://arxiv.org/abs/2408.01517
- T. Chen, P. Munoz Ewald; Interpretable global minima of deep ReLU neural networks on sequentially separable data, https://arxiv.org/abs/2405.07098
- E. Cardenas, T. Chen; Quantum Boltzmann dynamics and bosonized particle-hole interactions in fermion gases, https://arxiv.org/abs/2306.03300
- T. Chen, M. Hott; On the emergence of quantum Boltzmann fluctuation dynamics near a Bose-Einstein condensate, J. Stat. Phys., 190 (4), Art. 85, 2023.
- T. Chen, R. Denlinger, N. Pavlovic; Local well-posedness for Boltzmann's equation and the Boltzmann hierarchy via Wigner transform, Commun. Math. Phys., 368 (1), 427-465, 2019.
- T. Chen, A. Soffer; Mean field dynamics of a quantum tracer particle interacting with a boson gas, J. Funct. Anal., 276 (3), 971-1006, 2019.
- T. Chen, Y. Hong, N. Pavlovic; Global well-posedness of the NLS System for infinitely many fermions, Arch. Ration. Mech. Anal., 224 (1), 91-123, 2017.
- T. Chen, C. Hainzl, N. Pavlovic, R. Seiringer; Unconditional uniqueness for the cubic Gross-Pitaevskii hierarchy via quantum de Finetti, Commun. Pure Appl. Math., 68 (10), 1845-1884, 2015.
- T. Chen, N. Pavlovic, Derivation of the cubic NLS and Gross-Pitaevskii hierarchy from manybody dynamics in d=3 based on spacetime norms, Ann. H. Poincare, 15 (3), 543 - 588, 2014.
- T. Chen, I. Rodnianski; Boltzmann limit for a homogenous Fermi gas with dynamical Hartree-Fock interactions in a random medium, J. Stat. Phys., 142 (5), 1000 - 1051, 2011.
- T. Chen, J. Froehlich, A. Pizzo; Infraparticle scattering states in non-relativistic QED - I. The Bloch-Nordsieck paradigm, Commun. Math. Phys., 294 (3), 761 - 825, 2010.
- T. Chen, Infrared renormalization in non-relativistic QED and scaling criticality, J. Funct. Anal., 254 (10), 2555 - 2647, 2008.
- T. Chen, Convergence in higher mean of a random Schrödinger to a linear Boltzmann evolution, Comm. Math. Phys., 267, 355-392, 2006.
Awards
- 2024 CNS Rom Rhome Leadership Award, UT Austin
- 2020 - 2025 NSF Grant DMS-2009800
- 2019 Fellow of the American Mathematical Society, Class of 2020
- 2017 - 2020 NSF Grant DMS-1716198
- 2017 NSF Conference Grant DMS-1739320 for TexAMP 2017, PI
- 2012 - 2018 NSF CAREER Grant DMS-1151414, PI.
- 2011 Annales Henri Poincare Prize 2010.
- 2010 - 2013 NSF Grant DMS-1009448, PI.
- 2007 - 2010 NSF Grant DMS-0704031 / DMS-0940145, PI.
- 2004 - 2007 NSF Grant DMS-0407644 / DMS-0524909, PI.
- 2003 - 2004 NYU Research Challenge Fund Award.